MTH 406: Differential geometry of curves and surfaces

Homework I

(Due 05/02)

Problems for turning in

- 1. State and give formal mathematical proofs of the analogs of 1.2 (ix) and 1.2 (x) from the Lesson Plan for space curves.
- 2. If all the tangent lines of a regular parametrized curve γ pass through a single point, then show that γ is a part of a straight line. Does this conclusion hold if γ is not regular?
- 3. Show that if the curvature $\kappa(t)$ of a regular curve is positive everywhere, then $\kappa(t)$ is a smooth function of t. Show that this does not hold if the positivity of κ is not assumed.
- 4. Let γ be a unit-speed space curve. Show that if the normals of γ pass through a fixed point, then γ is a part of a circle.
- 5. Let γ be a unit-speed space curve with $\tau(s), \dot{\kappa}(s) \neq 0$, for all s. Show that α lies on a sphere if, and only if,

$$R^2 + (\dot{R})^2 S^2 = const,$$

where $R = 1/\kappa$ and $S = 1/\tau$.

Problems for practice

1. Let γ be a unit-speed plane curve with nowhere-vanishing curvature. We define the *center* of curvature $\epsilon(s)$ of γ at the point $\gamma(s)$ is defined by

$$\epsilon(s) = \gamma(s) + \frac{\eta(s)}{\kappa_{\pm}(s)}.$$

Prove that the circle with center $\epsilon(s)$ and radius $|1/\kappa_{\pm}(s)|$ is tangent to γ and $\gamma(s)$, and also has the same curvature as γ . (Note that this is called the *osculating circle*.)

- 2. Show that the signed curvature $\kappa_{\pm}(t)$ of a regular plane curve $\gamma(t)$ is a smooth function of t.
- 3. Show that the volume of a parallelopiped generated by three linearly independent vectors $u, v, w \in \mathbb{R}^3$ is given by $||(u \times v) \cdot w||$.
- 4. Plot the curve (helix) given by

$$\gamma(s) = (a\cos(s/c), s\sin(s/c), b(s/c)), s \in \mathbb{R},$$

where $c^2 = a^2 + b^2$, in Mathematica. Also, compute its curvature and torsion.

5. Plot the curve (catenary) given by

$$\gamma(t) = (t, \cosh(t)), \ t \in \mathbb{R},$$

in Mathematica. Show that its signed curvature is $1/\cosh^2(t)$.